- Расчетные параметры наружного климата для проектирования систем холодоснабжения, вентиляции и кондиционирования воздуха
- Расчетные параметры наружного климата для проектирования систем холодоснабжения, вентиляции и кондиционирования воздуха
- Нормативные требования
- Методика исследования
- Полученные результаты
- Выводы
- Литература
- Что такое «расчетная температура наружного воздуха»: определение, особенности расчета и интересные факты
- Определение
- Интересный факт
- Методы определения для систем отопления
- Как определяют степень массивности ограждающих конструкций
- Нормативы температур для жилых помещений
- Нормативы для общественных зданий
- Расчетная температура для вентиляции
- Расчетная температура воздуха и воздухообмен
- Расчетная температура для холодильных установок
- Формулы для холодильных установок
- Выбор нормированных параметров наружного воздуха
- Что такое обеспеченность
Расчетные параметры наружного климата для проектирования систем холодоснабжения, вентиляции и кондиционирования воздуха
Rated Outdoor Climate Parameters for Designing of Cold Supply, Ventilation and Air Conditioning Systems
A. S. Strongin, Candidate of Engineering, Scientific Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences; V. A. Vorontsov, OOO Systemair; K. A. Kuznetsov, OOO Systemair
Keywords: outdoor climate parameters, cold supply, ventilation, air conditioning
Ventilation, cold supply and air conditioning systems responsible for maintaining optimal indoor climate conditions for public and production buildings are large consumers of material and energy resources. The refrigerating power of their systems can reach thousands of kilowatts, and their cost – tens of millions of rubles. Correct choice of design outdoor climate parameters during design of cold supply systems allows for saving on capital cost of their installation, as well as reduction of energy resources use in the course of their operation by 15–25 %.
Системы вентиляции, холодоснабжения и кондиционирования воздуха, обеспечивающие оптимальные условия микроклимата для общественных и производственных зданий, являются крупными потребителями материальных и энергетических ресурсов. Холодильная мощность систем может достигать несколько тысяч киловатт, а их стоимость – десятков миллионов рублей. Корректный выбор расчетных параметров наружного климата при проектировании систем холодоснабжения позволяет добиться экономии первоначальных затрат на их устройство, а также снизить потребление энергоресурсов в процессе эксплуатации на 15–25 %.
Расчетные параметры наружного климата для проектирования систем холодоснабжения, вентиляции и кондиционирования воздуха
А. С. Стронгин, канд. техн. наук, Научно-исследовательский институт строительной физики РААСН
Системы вентиляции, холодоснабжения и кондиционирования воздуха, обеспечивающие оптимальные условия микроклимата для общественных и производственных зданий, являются крупными потребителями материальных и энергетических ресурсов. Холодильная мощность систем может достигать нескольких тысяч киловатт, а их стоимость – десятков миллионов рублей. Корректный выбор расчетных параметров наружного климата при проектировании систем холодоснабжения позволяет добиться экономии первоначальных затрат на их устройство, а также снизить потребление энергоресурсов в процессе эксплуатации на 15–25 %.
Нормативные требования
Заданные параметры микроклимата в помещениях жилых, общественных, административно-бытовых и производственных зданий следует обеспечивать в пределах максимальных расчетных параметров наружного воздуха для соответствующих районов строительства, регламентируемых СП 131.13330.2018 и СП 60.13330.2016 [1, 2]:
- параметры А – для систем вентиляции и воздушного душирования в теплый период года;
- параметры Б – для систем отопления, вентиляции и воздушного душирования в холодный период года, а также для систем кондиционирования в теплый и холодный периоды года.
Согласно СП 131.13330 параметры температуры и энтальпии для систем вентиляции и кондиционирования в теплый период года определяются как параметры Б. Температура при этом соответствует графе 4 в табл. 4.1, которая соответствует обеспеченности 98 %, а энтальпия определяется из рис. А.5 и имеет разброс параметров от нижнего до верхних значений. Учитывая, что разброс параметров энтальпии сильно влияет на подбор оборудования для систем вентиляции и кондиционирования, было решено проанализировать климатические данные за последние 10–20 лет для крупных городов и представительных районов РФ и составить таблицу с данными по температуре, энтальпии и абсолютному влагосодержанию воздуха.
Методика исследования
Для выбора расчетных параметров наружного климата (температуры, энтальпии и влагосодержания) использовались архивные данные о погоде, представленные на сайтах «Расписание погоды» и «метео.ру». Данные за весь период наблюдения отсортированы по выделенным граничным параметрам. Граничные параметры приняты с обеспеченностью 98 %, т. е. необеспеченность менее 175 час/год. Граничное значение выбирается за весь период наблюдения, далее выполняется сортировка по убыванию. Например, если период наблюдения составляет 11 лет, граничное значение необеспеченности: 11 • 175 = 1925 час.
С учетом данных температуры и влажности последних лет, которые имеются в виде измеренных параметров, фиксируемых каждые три часа, мы произвели расчет удельной энтальпии и абсолютного влагосодержания.
Таблица
Энтальпия и влагосодержание наружного воздуха в теплый период года для расчета номинальной мощности систем вентиляции и кондиционирования
Для расчета энтальпии и влагосодержания использовались формулы [3, 4].
Данные по абсолютному влагосодержанию, которые необходимы для расчета процессов осушения воздуха при вентиляции бассейнов [5] и аналогичных объектов, были независимо рассчитаны на обеспеченность 98 %.
Полученные результаты
Расчетные значения метеопараметров (удельная энтальпия и влагосодержание) регионов РФ представлены в таблице.
Кроме корректного выбора расчетных условий для определения максимальной мощности оборудования, для технико-экономического обоснования необходимо также учитывать изменение климатических параметров в течение года или сезона.
Европейский Союз разработал регламент снижения энергопотребления в зданиях экодизайна (Ecodesign). Экодизайн (экологическое проектирование) определяет новый подход к разработке продукции, поощряющий производителей учитывать экологический эффект продукта на протяжении всего жизненного цикла. При сертификации холодильного оборудования Eurovent применяет сезонный показатель энергоэффективности холодильного оборудования SEER, величина которого определяется отношением сезонной выработки холода Qх и сезонных затрат электроэнергии Qэл
Для расчета сезонных показателей используется БИН-метод (BIN method), позволяющий дифференцированно отражать текущую величину отношения наружной температуры воздуха и соответствующую ей величину загрузки оборудования. Для выбранного населенного пункта строится БИН-диаграмма (BIN diagram) часовой продолжительности наружных температур (ступенчатый годограф температур). Диаграмма разделяется на БИН-интервалы (ячейки) шириной 1 °С. Каждому пронумерованному интервалу соответствует: среднее значение текущей наружной температуры (БИН-температура), текущее потребление холода (загрузка оборудования), текущее значение холодильного коэффициента EER.
Интегральный сезонный показатель рассчитывается суммированием текущих значений всех интервалов по формуле
где Qx, Qэл – соответственно, сезонное количество произведенного холода и затраченной электроэнергии, кВт•ч/сезон
где n – общее количество БИН-интервалов в сезоне с i-той температурой наружного воздуха (зависит от сезонного диапазона изменения температуры наружного воздуха и выбранной ширины ячейки),
где Qxi – количество холода, вырабатываемое холодильным оборудованием при i-той БИН-температуре наружного воздуха, кВт•ч;
qxi – текущая холодильная мощность единицы оборудования при i-той БИН-температуре наружного воздуха, кВт;
τi – количество часов длительности каждой БИН-температуры наружного воздуха, ч.
EERbin(i) – текущее значение холодильного коэффициента EER для каждой БИН-температуры и соответствующей величине загрузки оборудования.
Предлагаем аналогичный подход для оценки энергоэффективности и годового энергопотребления для всей системы холодоснабжения и кондиционирования, а не только ее отдельных элементов [6, 7]. Для различных объектов текущая мощность системы определяется не только текущей наружной температурой, но и удельной энтальпией и влагосодержанием, что требует построения соответствующих графиков (БИН-диаграмм).
На рис. 1 в качестве примера приведены рассчитанные нами по изложенной методике графики осредненных значений температуры, энтальпии и абсолютного влагосодержания, с отображением количества часов их продолжительности для теплого периода года во Владивостоке.
Для сравнения климатических параметров двух городов – Москвы и Владивостока, на рис. 2 приведены графические данные по количеству часов для значений энтальпии, а также указаны граничные значения параметров с обеспеченностью 98 %.
По нашему мнению, при подборе оборудования целесообразно учитывать значения с указанной обеспеченностью. Возможное превышение указанных значений составляет менее 175 час/год и происходит, как правило, несколько часов в течение суток, что не существенно влияет на микроклимат помещения вследствие тепловой инерции и теплоаккумулирующей способности наружных и внутренних ограждений здания. Одной из ошибок проектирования является переразмеренность оборудования при его расчете на более высокие метеопараметры, что негативно сказывается на экономических и энергетических характеристиках, а также на затратах для подведения избыточных электрических мощностей.
Сравнение графиков количества часов энтальпии для теплого периода года в Москве и Владивостоке с указанием границ обеспеченности 98 %
Использование реальных климатических данных позволяет сделать оценки затрат на эксплуатацию в течение года и оценить экономию при использовании оборудования с утилизацией энергии. Также можно сделать сравнение оборудования, которое имеет разные коэффициенты утилизации тепловой энергии и возможности эффективного охлаждения. Так, например, затраты на эксплуатацию в теплый период можно снизить в несколько раз за счет применения в вентиляционном оборудовании градирни c косвенным адиабатным охлаждением, которое позволяет охлаждать наружный воздух на 10–12 °C без изменения его влагосодержания и без использования компрессора холодильной машины.
Выводы
При подборе оборудования для систем вентиляции, холодоснабжения и кондиционирования значение температуры допустимо определять согласно графе 4 в таблице 4.1 СП 131.13330. Значение удельной энтальпии и абсолютного влагосодержания наружного воздуха в теплый период года следует принимать из приведенной в статье таблицы для представленных городов, а для других регионов целесообразно принимать максимальное значение энтальпии, указанное для данного региона в СП 131.13330.2018 (рис. А5).
Возможность использования реальных климатических данных позволяет оптимизировать подбор холодильного и вентиляционного оборудования, снизить его стоимость и расход энергоресурсов. Объективная оценка годовых эксплуатационных затрат, в первую очередь электроэнергии, наглядно демонстрирует экономическую эффективность использования энергосберегающего оборудования и схемных решений, способствует расширению его применения в практике проектирования.
Литература
- СП 131.13330.2018 «СНиП 23-01-99* Строительная климатология». М., 2018.
- СП 60.13330.2016 «СНиП 41–01–2003 Отопление, вентиляция и кондиционирование воздуха» (с изменением № 1). М., 2003.
- Нестеренко А. В. Основы термодинамических расчетов вентиляции и кондиционирования воздуха. М.: Высшая школа, 1971.
- Богословский В. Н., Кокорин О. Я., Петров Л. В. Кондиционирование воздуха и холодоснабжение. М.: Стройиздат, 1985.
- Р НП «АВОК» 7.5-2020 «Обеспечение микроклимата и энергосбережение в крытых плавательных бассейнах. Нормы проектирования». М.: АВОК-ПРЕСС, 2020.
- Стронгин А. С. Оценка эффективности холодоснабжения общественных зданий. Ч. 1. Энергоэффективность // Энергосбережение и умные технологии. – 2020. – № 2. – С. 12–16.
- Стронгин А. С. Оценка эффективности холодоснабжения общественных зданий. Ч. 2. Экономическая и экологическая эффективность // Энергосбережение и умные технологии. – 2020. – № 3. – с. 9–11.
Авторы выражают глубокую благодарность за сотрудничество М. В. Клюевой («ГГО»).
Что такое «расчетная температура наружного воздуха»: определение, особенности расчета и интересные факты
При проектировании систем отопления и вентиляции в многоквартирных и малоэтажных загородных зданиях в обязательном порядке принимается во внимание такой показатель, как расчетная температура наружного воздуха. При условии правильного определения этого параметра домашние инженерные системы в последующем работают эффективно даже в самые морозные или, наоборот, жаркие дни и к тому же получаются достаточно экономичными.
Определение
Поскольку климат в России холодный, в особенности внимательно у нас в стране относятся к проектированию систем отопления. Поэтому под понятие «расчетная температура наружного воздуха» чаще всего в РФ попадает усредненная t° наиболее холодных пятидневок в данной конкретной местности за 8 наиболее морозных зим последних 50 лет. Именно этот параметр и принимается во внимание при проектировании систем отопления и вентиляции. Интересным можно считать тот факт, что этот показатель всегда намного выше, чем абсолютная минимальная t° для того же района.
К примеру, для Москвы расчетная температура наружного воздуха равна -26 °С. Абсолютная же минимальная зимняя t° для столицы составляет уже -41 °С. Для Санкт-Петербурга эти показатели равны -24 и -36 °С соответственно.
Несмотря на то что расчетная наружная температура всегда выше абсолютной минимальной, системы отопления, спроектированные с ее учетом, получаются достаточно эффективными. Дело в том, что в большинстве случаев строительные ограждающие конструкции разного рода зданий отличаются достаточно большой тепловой инерцией. В результате кратковременное понижение наружной температуры, к примеру, в столице даже и до минимальных -41 °С не приведет к сколько-нибудь значительному охлаждению воздуха в помещениях домов.
Использование при проектировании именно показателя расчетной температуры наружного воздуха, таким образом, позволяет значительно экономить на монтаже отопительных систем. В особенности это бывает заметным при массовых застройках.
Интересный факт
Разного рода нормативы, регулирующие проектирование инженерных систем, разрабатывались у нас в стране еще в советские времена. И конечно же, на данный момент многие такие документы могут считаться уже даже и устаревшими. Сегодня строительные компании, разработанные в советские времена, правила зачастую по некоторым пунктам не соблюдают. Однако в большинстве случаев это никак не сказывается на комфорте проживания и работы в зданиях людей.
К примеру, в наше время за расчетную наружную температуру проектные компании принимают обычно самую холодную пятидневку за 8 самых морозных зим последних не 50, а не более 20 лет. Дополнительно такие фирмы могут закладывать в проекты коммуникаций разного рода автоматику, включающую/выключающую оборудование по мере необходимости. К примеру, вентиляция в современных зданиях может функционировать только тогда, когда в них находятся люди.
Методы определения для систем отопления
Таким образом, мы выяснили, что такое расчетная зимняя температура наружного воздуха. В большинстве случаев в России при проектировании систем отопления принимается во внимание именно t° самых холодных пятидневок 8 зим. Однако иногда этот показатель может рассчитываться и по-другому. При проектировании отопительных сетей инженеры учитывают, помимо всего прочего, и степень массивности ограждающих конструкций зданий.
Расчетная температура для строительных конструкций очень толстых (к примеру, бревенчатых стен) равна именно t° пятидневки за 8 лет. Если же ограждающие конструкции здания относятся к легким, при проектировании систем отопления принимается во внимание средняя температура для наиболее холодных суток года (то есть для Москвы, к примеру, это может быть -46 °С). Для домов с не слишком толстыми и не особенно тонкими стенами вычисляется при этом среднее арифметическое между двумя этими показателями.
Как определяют степень массивности ограждающих конструкций
Этот показатель для стен и перекрытий определяется прежде всего величиной их тепловой инерции. Последняя при этом вычисляется по формуле:
D = R1S1 + R2S2 + R3S3 + … + RnSn.
Здесь R1, R2, R3, Rn — термическое сопротивление слоев ограждения в м 2 *ч*град/ккал. S1, S2, S3, Sn в формуле — коэффициент теплоусвоения материалов в период колебаний температур за 24 часа в ккал/м 3 *ч*град.
Параметр S высчитывается для каждого слоя по следующей формуле:
В этой формуле λ — коэффициент теплопроводности материала в ккал/м*ч*град, с — его удельная теплоемкость ккал/кг*град, y — объемный вес в кг/м 3 .
Расчетная температура наружного воздуха для отопления, в зависимости от массивности стен (показателя D), определяется по таблице.
Нормативы температур для жилых помещений
Проектировать систему отопления, в том числе и с учетом наружной температуры, следует таким образом, чтобы в помещениях разного назначения в доме или квартире в последующем создавался микроклимат, соответствующий действующему законодательству. Для жилых зданий у нас в стране в этом плане предусматриваются следующие нормативы:
жилые комнаты — температура зимой не ниже +18 °С;
угловые жилые комнаты — +20 °С;
ванные комнаты — +25 °С.
При этом если расчетная наружная температура воздуха в данной конкретной местности ниже -31 °С, для жилых обычных и угловых помещений показатели увеличиваются до +20 и +22 °С соответственно.
Нормативы для общественных зданий
Разумеется, предусматриваются нормативы температуры воздуха и для разного рода помещений общественного назначения.
Согласно нормативам, в тех зданиях, в которых люди всегда находятся в уличной одежде, температура воздуха не должна опускаться ниже 14 °С. Допустимой максимальной температурой в административных и офисных помещениях в летнее время года является 30 °С. При этом минимальной t° зимой в таких зданиях считается -13 °С.
Расчетная температура для вентиляции
Такие инженерные системы в многоквартирных домах монтируются в обязательном порядке. Предусматривают вентиляционные сети и во многих загородных жилых зданиях. При проектировании таких систем также, как уже упоминалось, принимается во внимание расчетная зимняя температура наружного воздуха. С использованием этого показателя в последующем вычисляется оптимальная мощность вентиляционного оборудования.
В данном случае проектирование выполняется с применением примерно тех же правил, что и для систем отопления. То есть чаще всего:
для легких ограждений принимается во внимание минимальная температура самого холодного месяца;
для стен малой массивности — средняя наружная температура наиболее холодных дней;
для ограждений средней массивности — среднее арифметическое между показаниями t° наиболее холодных суток и самой морозной пятидневки;
для массивных стен — температура пятидневки.
Расчетная температура воздуха и воздухообмен
По мощности вентиляционное оборудование для жилых и разного рода общественных помещений подбирается таким образом, чтобы обеспечить наибольший комфорт находящихся в них людей. То есть проектироваться подобные системы должны таким образом, чтобы обеспечить нужную кратность воздухообмена. Этот показатель, в свою очередь, и зависит от расчетной наружной температуры на улице.
Для помещений разного назначения предусматривается и неодинаковая кратность воздухообмена.
Расчетная температура для холодильных установок
При проектировании такого оборудования инженеры принимают во внимание в первую очередь такие показатели, как время обработки и коэффициент запаса. Также при расчете холодильных установок, как и систем отопления, учитывается расчетная температура наружного воздуха. Однако в данном случае во внимание принимаются, конечно же, показатели не самых низких t° в году, а самых высоких.
К сожалению, у нас в стране на данный момент практически не имеется справочной литературы, в которой были бы указаны показатели расчетных наружных температур для холодильных установок в той или иной местности. Однако программы с базами самых высоких t° для разных городов можно встретить в интернете. Единственное — инженеру, которому понадобились подобные сведения, вряд ли удастся проверить первоисточники и достоверность информации в таких списках.
Формулы для холодильных установок
Найти стопроцентно достоверные таблицы и списки городов с указанием расчетных наружных температур для такого оборудования сегодня, таким образом, достаточно сложно. Но в России, к счастью, еще с советских времен сохранились документы с формулами для вычисления таких показателей. Если найти необходимую информацию о наружной температуре в данном конкретном районе не удастся, расчет можно произвести, к примеру, по такой формуле:
tH = tCP МЕС + 0,25 × tAM (4.3).
Здесь tCP МЕС — средняя температура самого жаркого месяца в регионе, tAM — температура абсолютного максимума.
Также выбор расчетной наружной температуры воздуха при проектировании холодильных установок может осуществляться, к примеру, с использованием следующей формулы:
Тнар = 0,4Та.м.+ 0,6Тс.м.
Здесь Тс.м — усредненная температура в 13 часов самого жаркого месяца, Та.м — максимальная по климатическим данным.
Помимо всего прочего, согласно нормативам, коэффициент теплопередачи ограждений холодильной установки определяется с учетом климатической зоны, которых в России имеется три:
южная — со среднегодовой температурой от 9 °С;
средняя — с температурой 1-8 °С;
северная — с температурой наружного воздуха от 0 о С и ниже.
Иногда в зимнее время года камеры холодильников приходится обогревать с использованием специальных устройств. Расчет мощности последних, конечно же, также производится с учетом наружной температуры. Но в данном случае в расчет принимаются зимние показатели.
Выбор нормированных параметров наружного воздуха
Проектироваться системы отопления, вентиляции и кондиционирования в зданиях разного назначения, таким образом, должны с учетом изменений погоды на улице. Регулирует у нас в стране численные значения параметров наружного воздуха СНиП 23-01-99.
Согласно этому документу, при проектировании инженерных систем, отвечающих за микроклимат в помещениях, могут учитываться:
параметры группы А — для теплого времени года;
группы В — для холодного.
При этом параметры для переходных периодов (весна/осень) принимаются такие:
для температуры — 10 °С;
для энтальпии — 26,5 кДж/кг.
Согласно СНиП 23-01-99, при этом при проектировании сооружений и зданий допускается принимать во внимание более низкие параметры наружного воздуха зимой и более высокие летом.
При выполнении теплотехнических расчетов, определении влажностного режима и сопротивления воздухопроницаемости ограждающих конструкций могут, помимо всего прочего, учитываться следующие основные расчетные параметры наружного воздуха:
для объектов массового строительства — средняя t° наиболее холодной пятидневки обеспеченностью 0.92 для бетонных конструкций и 0.98 — для стальных;
средняя температура наружного воздуха наиболее холодного месяца;
средняя температура и продолжительность отопительного периода с устойчивой среднесуточной t° наружного воздуха 8 и 10 °С (необходимо для определения условий эксплуатации стен и перекрытий зданий);
расчетная скорость ветра (равна максимальной из средних за январь по румбам повторяемостью от 16% на высоте 10 м от поверхности земли).
Также при проектировании ограждающих конструкций зданий и сооружений учитывается, конечно же, и зона влажности района проектирования.
Что такое обеспеченность
При проектировании инженерных систем расчетную температуру в наше время компании часто выбирают с учетом с обеспеченности. Под этим термином при этом понимают вероятность того, что температура не превысит в последующем заданного значения. К примеру, обеспеченность 0.92 означает то, что наружная t° не выйдет за определенные рамки в течение 92% времени. В оставшийся период инженерная система может выполнять свои функции, к сожалению, недостаточно эффективно.
Как уже упоминалось, при проектировании коммуникаций бетонных зданий по нормативам у нас в стране учитывается расчетная наружная температура с обеспеченностью в 0.92. Однако при этом на практике компании производят монтаж инженерных систем в зданиях разного назначения в большинстве случаев с обеспеченностью в 0.95. Иногда по договоренности с заказчикам при повышении оплаты услуги при проектировании коммуникаций могут использоваться и большие показатели этого параметра. Такой подход гарантирует создание наиболее комфортных условий проживания или работы людей в помещениях здания.