ГИДРАВЛИЧЕСКИЙ И ТЕПЛОВОЙ РЕЖИМЫ
ТЕМА 7.
ОТКРЫТЫХ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ.
1. Пьезометрические графики.
2. Выбор схем присоединения абонентских установок.
3. Гидравлическая устойчивость.
4. Переменные гидравлические режимы.
Под гидравлическим режимом теплофикационной системы понимается взаимосвязь между расходами и давлениями воды в данный момент времени. При рассматриваемых стационарных режимах эти параметры являются неизменными во времени.
Гидравлический режим определяется характеристиками основных элементов, образующих теплофикационную систему. Такими элементами являются насосно-подогревательная установка и трубопроводы источника теплоснабжения, тепловая сеть с насосными и дроссельными станциям, расположенными на трассе, абонентские теплопотребляющие установки. Эти элементы можно разделить на активные (насосы), в которых давление воды повышается за счет подвода механической энергии извне, и пассивные (все остальные элементы), в которых давление воды снижается из-за потерь на трение.
При анализе гидравлических режимов систем теплоснабжения наряду с давлением применяется и другая единица гидравлический потенциал-напор. Напор выражается в линейных единицах (обычно метрах) столба жидкости, протекающей по трубопроводу.
Напор Н, м и давление р связаны следующей зависимотьь:
где р— давление, Па (Н/м 2 ), ρ- плотность, кг/м 3 , g=9,8 м/с 2 .
На рисунке представлена принципиальная схема сети, а также изображен примерный пьезометрический график с основными изображениями. На пьезометрическом графике в масштабе нанесены рельеф местности, высоты отопительных систем присоединенных зданий, значения полного Н0 и пьезометрического Н напорах во вех точках системы. В месте со схемой, на которой указаны расходы воды, пьезометрический график полностью определяет гидравлический режим тепловой сети.
Для расчета и анализа гидравлических режимов тепловых сетей существенное значения имеют не только гидравлические характеристики отдельных элементов оборудования абонентских теплопотребляющих установок, но и гидравлическая характеристика тепловой подстанции в целом. Эта характеристика определяется как характеристиками отдельных элементов, так и схемой их соединения, установленными авторегуляторами, их настройкой и т.д.
2. Выбор схемы присоединения абонента к тепловой сети осуществляют, прежде всего, по параметрам теплоносителя на вводе в здание и характеристикам внутренних систем абонента.
Параметры теплоносителя на вводе указывают теплоснабжающие организации. Таковыми параметрами являются:
ü давление в подающей и обратной магистрали тепловой сети,
ü статическое давление,
ü возможный диапазон колебания этих давлений,
ü расчетный график температур в сети.
Характеристики внутренних систем принимают по проекту либо по результатам натурных измерений. Весьма желательным при выборе схемы присоединения абонента является рассмотрение ее работоспособности с учетом перспективных тенденций изменения гидравлического режима тепловой сети, учетом возможной модернизации внутренних систем. Так, например, увеличение потребителей и повсеместное применение современных систем отопления с количественным регулированием сопровождается возрастанием колебания давления в теплосети. Это требует соответствующей технической защиты систем абонента. Особенно с неавтоматизированными узлами присоединения.
Преобразование характеристик теплоносителя до требуемой кондиции в системах абонента осуществляют в тепловых пунктах. Современные подходы в энергосбережении требуют реализации этих задач непосредственно у потребителя в индивидуальных тепловых пунктах. Для этого используют специальное оборудование, увязанное в функциональные схемы. Во все многообразие схем положены общие подходы, реализуемые для присоединения системы отопления как отдельно, так и совместно с системой горячего водоснабжения и системой теплоснабжения вентиляционных установок.
3. Состояние систем теплоснабжения во многих районах ПМР с позиции гидравлического режима можно оценить как неудовлетворительное, о чем свидетельствуют многочисленные сообщения об аварийных ситуациях и замерзающих районах, поселках. Причинами служат многочисленные проблемы, накопившиеся за годы эксплуатации систем, без выполнения своевременных мероприятий по их решению.
Редко встречаются цифры, характеризующие тепловую сеть в отношении устойчивости к возмущениям или разрегулированию режима работы. Зачастую этот показатель работы систем теплоснабжения не содержится в проектных документах тепловых сетей, не просчитывается при многочисленных изменениях в схемах при их развитии и реконструкции. Несмотря на это, вопрос актуален и достаточно сложен.
Оценка гидравлической устойчивости тепловых сетей.Проблема оценки гидравлической устойчивости состоит в комплексном подходе ее изучения и осложняется ведомственной разобщенностью организаций, эксплуатирующих отдельные основные части единой системы теплоснабжения.
С позиции сбора данных и анализа результатов режима работы системы, ее можно условно разделить на составные части:
ü — источник теплоснабжения со своим оборудованием (теплофикационная установка, котлы, насосы, ХВО и т.п.);
ü — тепловые сети и их оборудование;
ü — системы теплопотребления.
Каждая из этих частей характеризуется своим гидравлическим сопротивлением в зависимости от сочетания работающего оборудования, его характеристик работы и расхода теплоносителя — горячей воды. Сопротивление системы теплоснабжения во многом зависит от числа включенных систем теплопотребления, схем присоединения отопительных и нагревательных приборов и т.п. Сопротивление сетей и оборудования теплогенерирующего источника должно преодолеваться сетевыми насосами, установленными на источнике и подкачивающих насосных станциях магистральных тепловых сетей.
Количественно гидравлическая устойчивость для тепловых систем оценивается коэффициентом гидравлической устойчивости:
где: — потери напора в системе теплопотребления;
— потери напора в тепловой сети от теплоисточника до потребителя;
— располагаемый напор в тепловой сети на выходе из источника.
Коэффициент гидравлической устойчивости зависит от числа и величины гидравлического сопротивления систем подключенных потребителей тепла и обратно пропорционален величине располагаемого напора, развиваемого насосами.
Коэффициент гидравлической устойчивости может изменяться от «0» до «1», т.к. ∆Нрасп ≥ ∆Нпот, при этом выполняется непременное условие работы системы — напор, развиваемый насосами в теплоисточнике, должен преодолевать гидравлическое сопротивление сети и систем теплопотребления.
Система считается более гидравлически устойчивой, чем выше значение коэффициента «К», что имеет место при снижении потерь напора в сетях до потребителя и может вызвать увеличение количества перекачиваемой сетевой воды сверх нормативных объемов, т.е. повлечь гидравлическую разрегулировку системы.
Регулировка системы оценивается отношением расходов:
где: Gф — фактический расход сетевой воды в системе;
Gр — расчетный расход сетевой воды при проектном температурном график е.
Зависимость между степенью разрегулировки гидравлического режима Х и коэффициентом гидравлической устойчивости К выражается формулой:
Так, по теплоисточникам г. Вологды и населенных пунктов Вологодской области можно рассчитать степень разрегулировки Х и коэффициент К, подключенных к ним тепловых сетей. Результаты сведены в таблицу.
Например, система отопления потребителя с приборами М-140и М-140АО имеет гидравлическое сопротивление 1 м и располагаемый напор до источника тепла составляет 100 м. В этом случае К = 0,1. Если при помощи диафрагмы или регулирующего органа повысить сопротивление сети потребителя до 15 м.в.ст., то при этом К = 0,39, т.е. гидравлическая устойчивость повысится в 4 раза и потребитель в крайнем случае получит теплоносителя в 2,58 раза больше нормы за счет соседних систем теплопотребления. При возросшей гидравлической устойчивости в 4 раза степень разрегулировки гидравлического режима сократилась почти в 40 раз.
Анализ формулы (3) позволяет сделать вывод, что гидравлическая система со степенью разрегулировки X=1, или хорошо отрегулированная система, в которой фактически расход теплоносителя соответствует расчетному значению, имеет коэффициент устойчивости равный К= 1, т.е. наилучший показатель по устойчивости.
Способы повышения гидравлической устойчивости.Всякая регулировка должна начинаться с определения гидравлической устойчивости системы.Для выравнивания (повышения) гидравлической устойчивости наиболее эффективным и малозатратным вариантом является комплексная регулировка гидравлического режима на основании расчетных данных и проектных решений. Для избежания гидравлической разрегулировки отдельных абонентов или отопительных систем с открытым водоразбором применяют элеваторы (или циркуляционные насосы на перемычке вместо элеваторов), обеспечивая постоянство расхода сетевой воды у потребителя. Сокращение расхода сетевой воды при регулировке системы способствует уменьшению потерь в сети, что увеличивает гидравлическую устойчивость последней.Повышение гидравлической устойчивости сети возможно проведением дополнительного дросселирования потока воды в индивидуальных тепловых узлах потребителей и смешивающих устройствах (индивидуальное регулирование), а так же в тепловых камерах магистральных тепловых сетей на квартальных ответвлениях (местное регулирование) и теплоисточнике (нейтральное регулирование).
Гидравлические режимы
8.1 При проектировании новых и реконструкции действующих СЦТ, а также при разработке мероприятий по повышению эксплуатационной готовности и безотказности работы всех звеньев системы расчет гидравлических режимов обязателен.
8.2 Для водяных тепловых сетей следует предусматривать следующие гидравлические режимы:
расчётный — по расчётным расходам сетевой воды;
зимний — при максимальном отборе воды на горячее водоснабжение из обратного трубопровода;
переходный — при максимальном отборе воды на горячее водоснабжение из подающего трубопровода;
летний — при максимальной нагрузке горячего водоснабжения в неотопительный период;
статический — при отсутствии циркуляции теплоносителя в тепловой сети;
аварийный.
8.3 Расход пара в паровых тепловых сетях, обеспечивающих предприятия с различными суточными режимами работы, следует определять с учетом несовпадения максимальных часовых расходов пара отдельными предприятиями.
Для паропроводов насыщенного пара в суммарном расходе должно учитываться дополнительное количество пара, конденсирующегося за счет потерь теплоты в трубопроводах.
8.4 Эквивалентную шероховатость внутренней поверхности стальных труб следует принимать:
для паровых тепловых сетей кэ = 0,0002 м;
для водяных тепловых сетей к3 = 0,0005 м;
для сетей горячего водоснабжения к3 = 0,001 м.
При применении в тепловых сетях трубопроводов из других материалов значения эквивалентных шероховатостей допускается принимать при подтверждении их фактической величины испытаниями с учетом срока эксплуатации.
8.5 Диаметры подающего и обратного трубопроводов двухтрубных водяных тепловых сетей при совместной подаче теплоты на отопление, вентиляцию и горячее водоснабжение рекомендуется принимать одинаковыми.
8.6 Наименьший внутренний диаметр труб должен приниматься в тепловых сетях не менее 32 мм, а для циркуляционных трубопроводов горячего водоснабжения — не менее 25 мм.
8.7 Статическое давление в системах теплоснабжения при теплоносителе воде должно определяться для температуры сетевой воды, равной 100 °С. Следует исключать при статических режимах недопустимое повышение давления в трубопроводах и оборудовании.
8.8 Давление воды в подающих трубопроводах водяных тепловых сетей при работе сетевых насосов должно приниматься, исходя из условий невскипания воды при ее максимальной температуре в любой точке подающего трубопровода, в оборудовании источника теплоты и в приборах систем потребителей, непосредственно присоединенных к тепловым сетям.
8.9 Давление воды в обратных трубопроводах водяных тепловых сетей при работе сетевых насосов должно быть избыточным (не менее 0,05 МПа) и на 0,1 МПа ниже допустимого давления в системах теплоиспользования потребителей.
8.10 Давление воды в обратных трубопроводах водяных тепловых сетей открытых систем теплоснабжения в неотопительный период, а также в подающем и циркуляционном трубопроводах сетей горячего водоснабжения следует принимать не менее чем на 0,05 МПа больше статического давления систем горячего водоснабжения потребителей.
8.11 Давление и температура воды на всасывающих патрубках сетевых, подпиточных, подкачивающих и смесительных насосов не должны быть ниже давления кавитации и не должны превышать допускаемых по условиям прочности конструкций насосов.
8.12 Напор сетевых насосов следует определять для отопительного и неотопительного периодов и принимать равным сумме потерь напора в установках на источнике теплоты, в подающем и обратном трубопроводах от источника теплоты до наиболее удаленного потребителя и в системе потребителя (включая потери в тепловых пунктах и насосных) при суммарных расчетных расходах воды.
Напор подкачивающих насосов на подающем и обратном трубопроводах следует определять по пьезометрическим графикам при максимальных расходах воды в трубопроводах с учетом гидравлических потерь в оборудовании и трубопроводах.
8.13 Напор подпиточных насосов должен определяться из условий поддержания в водяных тепловых сетях статического давления и проверяться для условий работы сетевых насосов в отопительный и неотопительный периоды.
Допускается предусматривать установку отдельных групп подпиточных насосов с различными напорами для отопительного, неотопительного периодов и для статического режима.
8.14 Подачу (производительность) рабочих подпиточных насосов на источнике теплоты в закрытых системах теплоснабжения следует принимать равной расходу воды на компенсацию потерь сетевой воды из тепловой сети, а в открытых системах — равной сумме максимального расхода воды на горячее водоснабжение и расхода воды на компенсацию потерь.
8.15 Напор смесительных насосов следует определять по наибольшему перепаду давлений между подающим и обратным трубопроводами.
8.16 Число насосов следует принимать:
сетевых — не менее двух, один из которых является резервным; при пяти рабочих сетевых насосах в одной группе резервный насос допускается не устанавливать;
подкачивающих и смесительных (в тепловых сетях) — не менее трех, один из которых является резервным, при этом резервный насос предусматривается независимо от числа рабочих насосов;
подпиточных — в закрытых системах теплоснабжения не менее двух, один из которых является резервным, в открытых системах — не менее трех, один из которых также является резервным;
в узлах деления водяной тепловой сети на зоны (в узлах рассечки) допускается в закрытых системах теплоснабжения устанавливать один подпиточный насос без резерва, а в открытых системах — один рабочий и один резервный.
Число насосов определяется с учетом их совместной работы на тепловую сеть.
8.17 При определении напора сетевых насосов перепад давлений на вводе двухтрубных водяных тепловых сетей в здания (при элеваторном присоединении систем отопления) следует принимать равным расчетным потерям давления на вводе и в местной системе с коэффициентом 1,5, но не менее 0,15 МПа. Рекомендуется избыточный напор гасить в тепловых пунктах зданий.
8.18 При проектировании СЦТ с расходом теплоты более 100 МВт следует определять необходимость комплексной системы защиты, предотвращающей возникновение гидравлических ударов и недопустимых давлений в оборудовании водоподогревательных установок источников теплоты, в тепловых сетях, системах теплоиспользования потребителей.