Смесительный узел для отопления зачем нужен

Содержание
  1. Смесительный узел для отопления зачем нужен
  2. Смесительный узел как обязательная часть эффективной отопительной системы
  3. Смесительный узел как обязательная часть эффективной отопительной системы
  4. Смесительный узел как обязательная часть эффективной отопительной системы
  5. Принцип работы и сборка смесительного узла теплых полов
  6. Цель использования устройства
  7. Принцип работы
  8. Элементы системы
  9. Питающий дроссель
  10. Трехходовый дроссель
  11. Особенности настройки смесительного узла
  12. Самостоятельная сборка
  13. Смесительный узел как обязательная часть эффективной отопительной системы
  14. Основные преимущества применения рассматриваемых конструкций
  15. Модификации узлов и особенности их использования и монтажа
  16. Типы оборудования
  17. Варианты применения
  18. Рекомендации по установке
  19. Вывод
  20. Тепловой узел: принцип действия и схема теплового узла
  21. Зачем нужен насосно-смесительный узел для теплого пола и отопления дома
  22. Принцип работы насосно-смесительного узла простыми словами
  23. В данной насосно-смесительной группе Meibes уже есть:
  24. Преимущества насосно-смесительной группы
  25. Как происходит работа насосно-смесительного узла

Смесительный узел для отопления зачем нужен

Виды смесительных узлов для отопления

Смесительный узел – это узел, в котором происходит смешивание. В системах отопления это смешивание двух разных сред (жидкостей).

Назначение смесительного узла – получить необходимую настроечную температуру теплоносителя.

Смесительные узлы можно разделить на две категории:

1. Последовательный тип смешивания

2. Параллельный тип смешивания

Последовательный тип смешивания является самым энергоэффективным и более производительным типом смешивания и вот почему:

1. Более производительным он является, потому что весь расход насоса идет в контур, которому контролируется температура теплоносителя. То есть в зависимости от параллельного типа смешивания в последовательном типе смешивания весь расход идет тому контуру, для которого и предназначен смесительный узел.

2. Энергоэффективным он является, потому, что возвращаемый теплоноситель из смесительного узла обладает самой низкой температурой. Что согласно теплотехнике увеличивает мощность теплоотдачи. Смесительный узел с последовательным типом смешивания обязательно внедряется в низкотемпературные системы отопления

Параллельный тип смешивания, на мой взгляд, является некоторым уродом в системе отопления. Так как любому развивающемуся человеку сначала проще изобрести смесительный узел с параллельным типом смешивания.

Недостатки параллельного типа смешивания:

1. Расход насоса распределяется по разные стороны от смесительного узла. В некоторых смесительных узлах имеется внутренние потери расхода из-за особенностей движения теплоносителя.

2. Температура теплоносителя, от которой избавляется смесительный узел, равна настроечной температуре смесительного узла. Что однозначно является неразумным подходом к энергоэффективности. Такой узел подходит для высокотемпературных систем отопления. Где имеются контура с высокими температурами.

Смесительный узел с последовательным типом смешивания, который имеет центральное смешивание.

Смесительный узел с последовательным смешиванием, который имеет боковое смешивание.

Что такое центральное и боковое смешивание написано здесь: http://infosantehnik.ru/str/50.html

Смесительный узел с параллельным типом смешивания, у которого клапан имеет центральное или боковое смешивание.

Смесительный узел с параллельным типом смешивания, который имеет боковое смешивание.

Смесительный узел с двойным смешиванием

В такой схеме смесительного узла присутствую два узла смешивания и его смело можно назвать смесительный узел двойного смешивания.

Смешивание происходит в двух местах:

Расход насоса распределяется в трех контурах: (С1-С2),(С3-С4),(Линия 1)

Самый дешевый и не энергоэффективный смесительный узел марки:

Такой узел предназначен для теплых водяных полов. Подходит для высокотемпературных систем отопления. Например, если имеется радиаторное отопления (не ниже 60 градусов), и теплые водяные полы, которым температура теплоносителя рассчитана не выше 50 градусов. То есть на вход требуется всегда выше температура, чем настроечная.

Условие Т1>Т2. Невозможно чтобы Т1=Т2. Это условие относится ко всем смесительным узлам с параллельным типом смешивания. Повторюсь, для низких температур такой узел не подходит.

Смесительный узел с последовательным типом смешивания, имеющий трехходовой клапан с центральным смешиванием обладает самым энергоэффективными характеристиками.

Пример энергоэффективного узла смешивания

У такого смесительного узла может быть условие когда температура С1=С3

Смесительный узел DualMix от Valtec

Dualmix является параллельным типом смешивания, у которого по умолчанию в комплекте имеется трехходовой клапан с боковым смешиванием.

Смесительный узел CombiMix от Valtec

Смесительный узел CombiMix является последовательным типом смешивания, но это боковое смешивание. И к сожалению такой смесительный узел не подходит для низких температур. То есть температура на входе должна быть выше настроечной температуры узла.

Недостаток смесительного узла CombiMix в том, что этот смесительный узел с боковым смешиванием. А для низкотемпературных систем отопления подходят смесительные узлы, в которых имеется трехходовой клапан с центральным смешиванием.

Подробнее о клапанах и типах смешивания найдете здесь: http://infosantehnik.ru/str/50.html

Кстати готовые смесительные узлы FAR (TERMO-FAR) вполне удовлетворяют требованиям энергоэффективновсти.

В таком узле имеется термостатический смеситель с центральным смешиванием. То есть когда закрывается горячий проход, то в это же время открывается холодный проход. Каждый из двух проходов могут быть полностью закрыты по отдельности. Только такой трехходовой клапан может быть энергоэффективным. В любом случае узнавайте подробную работы трехходовых клапанов. Потому что могут подсунуть клапан с боковым смешиванием и тогда труба дело…

Можно приобретать готовые изделия они обычно имеют трехходвые клапана с центральным смешиванием, которые позволяют иметь одинаковую температуру настройки и входящей температуры.

Для получения смесительных узлов можно использовать различные клапана подробнее здесь:

Смесительный узел как обязательная часть эффективной отопительной системы

Смесительный узел как обязательная часть эффективной отопительной системы

Смесительный узел. Принцип работы. Назначение и расчеты.

Смесительный узел – это специальная цепь трубопроводов, которая образует смешивание двух разных потоков в один.

Для чего это нужно?

Для того, чтобы получить пониженную или другую температуру.
Для того, чтобы получить дополнительный расход в контуре отопления.

Видеоурок по расчету смесительного узла

Гидравлический разделитель (гидрострелка) по своей природе образует смесительный узел, но он создает независимое пространство внутри себя, и в этом пространстве присутствуют два и более, независимых контуров.

Подробнее о гидравлическом разделителе:

Чем же отличается смесительный узел от гидрострелки?

В смесительном узле происходит принудительное разделение потоков, то есть имеется не прерывный поток воды и он делиться за счет только движения воды. В гидрострелке получается область, где вода находится в свободном положение, эту воду начинают разгонять силы создаваемые насосом: Поток от одной зоны к другой.

В смесительном узле движение воды сразу смешивается. То есть смешиваются два разных потока в один поток.

Рассмотрим абсолютную схему смесительного узла

Важно понять, что существуют два типа смешивания: Последовательный и параллельный.

Последовательный тип смешивания хорош тем, что весь расход насоса идет потребителю.

Параллельный тип смешивания хорош тем, что можно сделать для регулировки один двухходовой клапан для регулирования. Но у параллельного типа смешивания есть один большой недостаток, это непостоянный расход потребителя. Так же расход насоса разбавляется с расходом источника.

Существует такая странная схема, которую можно сравнить с комбинированным типом смешивания. Такой тип смешивания содержит в себе сразу и параллельный и последовательный тип смешивания.

Комбинированный тип смешивания можно переключать из параллельного типа смешивания в последовательный тип смешивания. Также можно проводить различные балансировочные действия, для получения сразу двух типов смешивания. Такая схема подойдет там, где нужно сделать определенные расходы между контуром источника и контуром потребителя.

Последовательный тип смешивания

Обладает большей производительностью расхода в отличие от параллельного типа смешивания.

Виды схем смешивания для последовательного типа смешивания разделяются только различностью элементов и способом расположения элементов, например:

Насос может быть и на подающей линии потребителя и на обратной линии потребителя.

Таким образом, получаются две комбинации схем смесительного узла:

Для регулировки температуры, необходимо менять расходы между контурами источника и перемычки.

Для этого существуют трехходовые клапаны. Трехходовой клапан может быть установлен и на подающую линию и на обратную линию:

Важно понять, что трехходовой клапан регулирует проходы контуров источника тепла и перемычки. Контур потребителя тепла у трехходового клапан всегда открыт.

Вообще и насос, и трехходовой клапан должны по возможности работать на пониженной температуре теплоносителя для того, чтобы они прослужили долго. Трехходовой клапан однозначно нужно поставить на обратную линию потребителя. Насос для теплых полов ставят на подающую линию это связано с тем, чтобы теплоноситель толкал насос в теплые полы. В случаях, если в теплых полах образуется воздух, то насос может перестать качать теплоноситель через теплый пол. Насос может оказаться завоздушенным. При радиаторном отоплении насос можно смело ставить на обратку.

За место трехходового клапана можно использовать обычные краны, клапаны или балансировочные клапаны.

Параллельный тип смешивания

Позволяет получить свойство, при котором расход насоса делиться на контур источника тепла и потребителя тепла. Если потребитель меньше потребляет расход, то расход потребляется больше через источник тепла и наоборот.

В параллельном типе смешивания необходимо регулировать только контур источника тепла. Такой тип смешивания подходит в том случае, если расход источника тепла намного меньше чем расход потребителя.

Смесительный узел для теплого пола

Лучшим вариантом может служить только смесительный узел с последовательным типом смешивания, так как имеет большую производительность по расходу.

Подробнее о трехходовых клапанах и схемах с их применением Вы найдете Здесь:

На рынке существуют готовые смесительные узлы типа:

Смесительный узел dualmix является абсолютно параллельным типом смешивания.

Смесительный узел combimix является последовательным типом смешивания. Имеются дополнительные настройки. Настройка балансировочного клапана уменьшает или увеличивает проток по тепловому контуру (контур котла). Перепускной клапан служит для того, чтобы при закрытых контурах давать расход насосу.

Скачать программу CombiMix 1.0

Что касается расчетов по диаметру труб в смесительных узлах, то Вы найдете описание в разделе:

Смесительный узел как обязательная часть эффективной отопительной системы

Виды смесительных узлов для отопления

Смесительный узел – это узел, в котором происходит смешивание. В системах отопления это смешивание двух разных сред (жидкостей).

Назначение смесительного узла – получить необходимую настроечную температуру теплоносителя.

Смесительные узлы можно разделить на две категории:

1. Последовательный тип смешивания

2. Параллельный тип смешивания

Последовательный тип смешивания является самым энергоэффективным и более производительным типом смешивания и вот почему:

1. Более производительным он является, потому что весь расход насоса идет в контур, которому контролируется температура теплоносителя. То есть в зависимости от параллельного типа смешивания в последовательном типе смешивания весь расход идет тому контуру, для которого и предназначен смесительный узел.

2. Энергоэффективным он является, потому, что возвращаемый теплоноситель из смесительного узла обладает самой низкой температурой. Что согласно теплотехнике увеличивает мощность теплоотдачи. Смесительный узел с последовательным типом смешивания обязательно внедряется в низкотемпературные системы отопления

Читайте также:  Толщина стяжки по теплому водяному полу под плитку

Параллельный тип смешивания, на мой взгляд, является некоторым уродом в системе отопления. Так как любому развивающемуся человеку сначала проще изобрести смесительный узел с параллельным типом смешивания.

Недостатки параллельного типа смешивания:

1. Расход насоса распределяется по разные стороны от смесительного узла. В некоторых смесительных узлах имеется внутренние потери расхода из-за особенностей движения теплоносителя.

2. Температура теплоносителя, от которой избавляется смесительный узел, равна настроечной температуре смесительного узла. Что однозначно является неразумным подходом к энергоэффективности. Такой узел подходит для высокотемпературных систем отопления. Где имеются контура с высокими температурами.

Смесительный узел с последовательным типом смешивания, который имеет центральное смешивание.

Смесительный узел с последовательным смешиванием, который имеет боковое смешивание.

Что такое центральное и боковое смешивание написано здесь: http://infosantehnik.ru/str/50.html

Смесительный узел с параллельным типом смешивания, у которого клапан имеет центральное или боковое смешивание.

Смесительный узел с параллельным типом смешивания, который имеет боковое смешивание.

Смесительный узел с двойным смешиванием

В такой схеме смесительного узла присутствую два узла смешивания и его смело можно назвать смесительный узел двойного смешивания.

Смешивание происходит в двух местах:

Расход насоса распределяется в трех контурах: (С1-С2),(С3-С4),(Линия 1)

Самый дешевый и не энергоэффективный смесительный узел марки:

Такой узел предназначен для теплых водяных полов. Подходит для высокотемпературных систем отопления. Например, если имеется радиаторное отопления (не ниже 60 градусов), и теплые водяные полы, которым температура теплоносителя рассчитана не выше 50 градусов. То есть на вход требуется всегда выше температура, чем настроечная.

Условие Т1>Т2. Невозможно чтобы Т1=Т2. Это условие относится ко всем смесительным узлам с параллельным типом смешивания. Повторюсь, для низких температур такой узел не подходит.

Смесительный узел с последовательным типом смешивания, имеющий трехходовой клапан с центральным смешиванием обладает самым энергоэффективными характеристиками.

Пример энергоэффективного узла смешивания

У такого смесительного узла может быть условие когда температура С1=С3

Смесительный узел DualMix от Valtec

Dualmix является параллельным типом смешивания, у которого по умолчанию в комплекте имеется трехходовой клапан с боковым смешиванием.

Смесительный узел CombiMix от Valtec

Смесительный узел CombiMix является последовательным типом смешивания, но это боковое смешивание. И к сожалению такой смесительный узел не подходит для низких температур. То есть температура на входе должна быть выше настроечной температуры узла.

Недостаток смесительного узла CombiMix в том, что этот смесительный узел с боковым смешиванием. А для низкотемпературных систем отопления подходят смесительные узлы, в которых имеется трехходовой клапан с центральным смешиванием.

Подробнее о клапанах и типах смешивания найдете здесь: http://infosantehnik.ru/str/50.html

Кстати готовые смесительные узлы FAR (TERMO-FAR) вполне удовлетворяют требованиям энергоэффективновсти.

В таком узле имеется термостатический смеситель с центральным смешиванием. То есть когда закрывается горячий проход, то в это же время открывается холодный проход. Каждый из двух проходов могут быть полностью закрыты по отдельности. Только такой трехходовой клапан может быть энергоэффективным. В любом случае узнавайте подробную работы трехходовых клапанов. Потому что могут подсунуть клапан с боковым смешиванием и тогда труба дело…

Можно приобретать готовые изделия они обычно имеют трехходвые клапана с центральным смешиванием, которые позволяют иметь одинаковую температуру настройки и входящей температуры.

Для получения смесительных узлов можно использовать различные клапана подробнее здесь:

Принцип работы и сборка смесительного узла теплых полов

Теплые полы позволяют повысить энергоэффективность современного жилья, сделать его комфортнее, а также существенно экономят средства на отопление. Из всех разновидностей теплых полов водяной наиболее сложен в плане регулировки. Но он пользуется большей популярностью благодаря экономически выгодной эксплуатации, долговечности и надежности. Смесительный узел для теплого пола является важным элементом системы управления. Он поддерживает необходимую температуру внутри контуров и обеспечивает циркуляцию теплоносителя. Правильная работа коллектора влияет на функциональность и эффективность водяной системы отопления.

Цель использования устройства

Применение насосно-смесительного узла для конструкции теплого пола обязательно, так как вода в контурах должна иметь совершенно другую, более низкую температуру, нежели в обычных системах отопления. Такой температурный режим не приемлем для системы теплого пола по нескольким причинам:

  • Контуры с теплоносителем располагаются по всей площади помещения. К тому же они заключены в стяжку, которая также обладает высокой теплоемкостью. Отсюда следует, что для поддержания комфортной температуры в помещении уровень нагрева водяной системы должен быть ниже, чем в классических радиаторах.
  • Чтобы человек ощущал комфорт при хождении босиком по теплому полу, температура поверхности покрытия не должна превышать 30 градусов. В противном случае появятся дискомфортные ощущения.

Назначение насосно-смесительного узла также связано с поддержанием достаточного гидравлического давления в контурах с большой протяженностью или сложной криволинейной формой.

Принцип работы

Цель, которая ставится перед данным видом оборудования, заключается в снижении температуры воды в контуре до комфортного значения без влияния на основную систему отопления. Роль смесителя состоит в подмешивании холодной воды в горячий поток. Состоит смесительный узел из следующих элементов:

  • Циркуляционный насос, установленный на входе теплоносителя. Благодаря насосу в системе устанавливается и поддерживается оптимальное значение давления воды, идущей по контурам, а также скорость ее циркуляции.
  • Узел подмеса в виде регулирующего клапана, подпитывающего водяной контур горячим напором. Открытие клапана происходит после сигнала термодатчика. Горячая вода перестает поступать в контур после того как он приобретет заданную температуру и термодатчик подаст соответствующий сигнал.
  • Распределительная гребенка с расходомерами, позволяющая одновременно подключать несколько контуров.
  • Сепаратор, который в автоматически удаляет воздух из системы. Обычно устанавливается на готовые смесительные узлы от известных производителей.

Главная особенность смесительного узла для теплого пола заключается в его автономности. Он работает в автоматическом режиме без участия человека, самостоятельно контролируя и регулируя давление и температуру теплоносителя в контуре.

Элементы системы

Все схемы объединяет простота работы, возможность самостоятельного монтажа, а также расположение основных элементов. Подача и «обратка» располагаются с левой стороны, а коллектор с гребенками – с правой. Различия схем заключаются в добавлении некоторых деталей. Чаще коллектор располагают около смесительного узла, реже – в отдалении, что может быть связано с дефицитом свободного пространства или планировочными особенностями помещения.

Состав комплектующих зависит от материала используемых труб – из сшитого полипропилена, металлопластиковых, гофрированных из нержавеющей стали или медных.

В схеме используют следующие элементы:

  • Запорная арматура в виде шаровых кранов. Они не участвуют в регулировке основных показателей теплоносителя – его температуры и давления, но необходимы при проведении ремонтных работ, когда требуется отключить отдельные узлы системы.
  • Косой фильтр, предназначенный для механической очистки воды. Его применяют в системе, если нет уверенности в чистоте используемой воды. Такой фильтр не пропустит твердые частицы в устройство для настройки, обеспечив тем самым корректную работу системы и продлив срок службы клапанов.
  • Термометры, обеспечивающие зрительный контроль над температурой воды внутри контура. Некоторые модели оснащены зондом, который непосредственно соприкасается с теплоносителем. Термометры бывают жидкостными, механическими и цифровыми.
  • Термостатический клапан является основным элементом управления смесительного узла. Сверху на него надевается термостатическая головка. Когда температура теплоносителя меняется, головка механически воздействует на термоклапан. Если градус превышен, клапан закрывается, а при понижении температуры – открывается.
  • Байпас для отбора холодной воды – перемычка, которая при помощи сантехнических тройников формируется между трубой подачи и «обратки». Для осуществления точной настройки напора теплоносителя на байпасе устанавливают балансировочный вентиль, который обеспечит оптимальный режим работы системы и ее бесшумность.
  • Оптимальная скорость движения воды по трубам обеспечивается при помощи циркуляционного насоса.

Питающий дроссель

Система с двухходовым клапаном является наиболее простой в исполнении. Контроль над температурой воды, поступающей в трубы системы, осуществляется благодаря термостатической головке, установленной на клапане и жидкостному датчику. Открытие и закрытие клапана происходит благодаря головке, пропускающей горячую воду от котла в контур или отсекающей ее.

Таким образом, вода из «обратки» поступает неограниченно, а горячая только при необходимости под контролем клапана. Благодаря этому исключается перегрев теплого пола и продлевается срок его службы. Невысокая пропускная способность двухходового клапана обеспечивает плавную регулировку температуры воды, исключая резкие перепады.

Надежные и эффективные клапаны рекомендуют использовать большинство специалистов. Но по их же мнению, питающие клапаны не будут полезны при слишком большой площади помещений (свыше 200 м2).

Трехходовый дроссель

В отличие от двухходового клапана, трехходовый осуществляет смешивание воды разной температуры внутри себя. Этот элемент объединил в себе питающий перепускной клапан и байпас. Особенность заключается в возможности настройки количества горячего и холодного теплоносителя для смешивания, благодаря заслонке, расположенной между трубой с горячей водой и «обраткой».

Такие клапаны имеют недостатки. Есть вероятность подачи очень горячей воды по сигналу термодатчика, которая может из-за резкого перепада спровоцировать повышение давления в трубах и нарушение целостности контуров. Большая пропускная способность трехходового клапана может стать причиной резкого перепада температуры воды в контуре даже при минимальном смещении регулировки устройства.

Особенности настройки смесительного узла

Механизм настройки обеспечивает точную регулировку температуры, движущейся по трубам системы обогрева, воды. В первую очередь это необходимо для создания комфортной поверхности пола и условий, продлевающих срок службы системы. Из котла вода выходит с температурой 60-80 градусов, а приемлемой для поверхности пола является температура не выше 30 градусов. Смесительный узел вводит в разогретый теплоноситель холодную воду, доводя его до оптимальных показателей.

Настройка производится в ручном или автоматизированном режиме – сервопривод потребуется приобрести дополнительно, так как он не входит в базовый комплект. Каждый контур оснащается запорными кранами, с помощью которых каждый контур имеет свои параметры настройки. Таким образом можно установить разную температуру поверхности пола для отдельных комнат или для отдельных участков в одном помещении.

Самостоятельная сборка

Собрать коллектор можно самостоятельно. В комплекте, как правило, производитель прикладывает подробную монтажную схему. Выполнить потребуется следующие виды работ:

  1. Фиксация оборудования осуществляется в горизонтальном положении на стене или в нише. Основное требование заключается в обеспечении доступа для обслуживания элементов узла и их управления. Если коллектор устанавливается не в отдельном помещении, а в ванной или прихожей, его в эстетических целях необходимо замаскировать, установив внутри коллекторного шкафа.
  2. Нагретая вода от котла подается снизу, а сверху монтируют «обратку». Для установки запорных кранов выбирают участок перед рамкой, после них монтируют насос. С его помощью будет происходить смешивание «обратки» и горячей воды, а также поддерживаться оптимальное давление в трубах.
  3. Выполняют установку пропускного клапана и распределительной гребенки.
  4. После этого необходимо выполнить разводку труб. Те, что идут на пол, закрепляют сверху, а трубы от системы отопления крепят в нижней части.
  5. При подключении коллектора используют комплектующие в виде компрессионных фитингов, в состав которых входит опорная втулка, зажимное кольцо и промежуточная латунная гайка.
  6. Когда монтажные работы завершены, приступают к проверке герметичности соединений – опрессовке. Для этого с помощью специального насоса в системе повышают давление и оставляют на 24 часа. Коллекторный узел полностью готов к эксплуатации, если установленное изначально значение давления за сутки не поменялось.

При недостатке опыта при самостоятельной сборке коллектора могут быть допущены следующие ошибки:

  • Некорректная настройка байпаса из-за неверных расчетов допустимой нагрузки на контур. Такие расчеты необходимо выполнять до начала монтажных работ.
  • Отсутствие сепаратора приводит к образованию воздушных пробок в водяных конурах, из-за чего падает эффективность системы отопления.
  • Неправильный выбор точки подачи горячей воды. Теплоноситель должен поступать сверху, а не снизу.
  • Отсутствие обратного клапана, который понадобится для предотвращения протечки.

Если изначально коллектор собран неправильно, впоследствии устранить ошибки и переделать систему будет проблематично. Поэтому лучше доверить работу специалисту, который произведет правильную сборку и настройку оборудования.

Смесительный узел как обязательная часть эффективной отопительной системы

В наше время вопросу экономичности работы отопительных коммуникаций уделяется самое пристальное внимание. Кроме обязательных элементов: котла, трубопроводов и радиаторов в конструкцию все чаще включают специальные блоки, предназначенные для улучшения циркуляции и регулирования температуры. Установить насосно-смесительный узел своими руками по силам практически любому человеку, главное – соблюдать несколько важных рекомендаций.

На фото: в систему входит несколько составных частей, каждая из которых выполняет свои функции

Основные преимущества применения рассматриваемых конструкций

Если вы сомневаетесь в целесообразности установки смесительно-насосного узла, то следует ознакомиться с его основными достоинствами:

Удобство управления Смесительный узел значительно упрощает процесс регулировки температуры теплоносителя. При этом настройка может производиться как вручную посредством специального вентиля, так и в автоматическом режиме, с помощью электропривода и устройства измерения температуры в помещении. То есть система может быть полностью автономной и работать без постороннего вмешательства
Экономичность Специалисты подтверждают, что установка рассматриваемого узла сокращает расходы энергии на отопление на 30-50%. Коммуникации работают максимально эффективно за счет того, что поддерживается определенная температура и обеспечивается постоянная циркуляция теплоносителя, способствующая наилучшей теплоотдаче
Долговечность Срок службы регулирующей системы довольно внушителен и может составлять свыше 50 лет. Пусть вас не пугает цена изделия, ведь достаточно потратиться один раз, чтобы обеспечить экономию и удобство на долгие годы вперед. Главное, подбирать более качественные варианты, а не продукцию бюджетного сегмента
Простота монтажа Инструкция по установке проста и понятна, поэтому с работой справятся даже те, кто не имеет опыта в данной сфере. Это позволяет сэкономить значительные средства, что также немаловажно в ситуации, когда есть ограничения по бюджету

Совет! Подбирать конкретную модификацию все-таки лучше с привлечением специалиста, так как требуется учитывать целый ряд факторов, и без должного опыта можно упустить какой-либо немаловажный момент.

Проект установки смесительного узла составляется в обязательном порядке

Модификации узлов и особенности их использования и монтажа

Стоит отметить, что на рынке представлено весьма разнообразное оборудование, которое предназначено для различных систем со своей спецификой эксплуатации, мы рассмотрим самые важные факторы, о которых ни в коем случае не следует забывать.

Типы оборудования

Конструкция системы во многом зависит от того, какой клапан в ней используется, именно по этому признаку выделяется два основных вида – варианты с трехходовыми и двухходовыми узлами.

Водосмесительный узел с трехходовым клапаном имеет следующие особенности:

Такие схемы отличает простота, вот почему их можно рекомендовать практически всем

  • Высокая пропускная способность, позволяющая подобрать оптимальный вариант даже для самых больших конструкций. По большому счету, этот вариант единственно возможный, если речь идет о больших системах с огромными объемами циркуляции.
  • Смешивание происходит следующим образом: из одного патрубка поступает горячая вода, а в другой подается холодная обратка. Все довольно просто и надежно, именно поэтому такой вариант можно рекомендовать для самого широкого спектра применения.

Применение двухходовых клапанов имеет следующие особенности:

  • Этот вариант подходит для небольших помещений ввиду малой пропускной способности. Конструкция достаточно проста, что обеспечивает ее долговечность, и не требует обслуживания.
  • Смешивание теплоносителя производится постоянно, что исключает вероятность перегрева системы и обеспечивает плавное регулирование температуры.

Двухходовые клапаны используются в небольших системах

Варианты применения

Конструкции рассматриваемой группы могут использоваться в самых различных системах, рассмотрим более распространенные из них:

  • Наиболее востребованы конструкции данного типа в системах теплого пола. Это обусловлено тем, что для подобных коммуникаций очень важно поддержание постоянного температурного режима, и любые перепады негативно сказываются на состоянии системы. В торговле можно подобрать готовые конструкции под любые параметры системы, главное, составить грамотный проект, учитывающий все особенности коммуникаций.

В сложных многоконтурных системах может быть использовано несколько смесительных блоков

  • Смесительный узел для твердотопливного котла делает работу системы более стабильной и равномерной, особенно при полной загрузке оборудования. Его использование позволяет увеличить срок работы оборудования и обеспечивает значительную экономию топлива за счет того, что предотвращается излишнее нагревание теплоносителя. Кроме того, контролируется и минимальная температура, что позволяет избежать возникновения конденсата.

Такие конструкции очень удобны в установке и занимают минимум места в системе

  • Смесительный узел для водяного калорифера применяется в системах кондиционирования и вентиляции для регулирования температуры жидкости в теплообменнике и, как следствие, изменение температуры проходящего через конструкцию воздушного потока. Ввиду сложностей расчета в системах кондиционирования лучше приобретать готовые блоки, которые чаще всего отражены в проектной документации.

Системы кондиционирования также нуждаются в установке узлов для регулирования температуры теплоносителя

Рекомендации по установке

Несмотря на кажущуюся сложность конструкции, установить ее в систему отопления весьма просто, главное – соблюдать правильную последовательность действий и делать все операции аккуратно.

В целом рабочий процесс выглядит следующим образом:

  • В первую очередь необходимо подготовить все требуемое: инструмент, само оборудование, уплотнительные составы для соединений и т.д.
  • Затем в месте расположения конструкции (а она должна стоять перед вводом контура теплого пола) устанавливается или самостоятельно собирается коллекторный шкаф, его размеры и конфигурация зависят от особенностей и размеров применяемого оборудования.
  • Далее узел закрепляется к поверхности так, чтобы обеспечивалась его неподвижность, и можно было бы без труда добраться до каждого элемента в случае необходимости.

Примерно так должна выглядеть система в коллекторном шкафу, обратите внимание, что он может быть и встроенным

  • В первую очередь присоединяется система подмеса, она идет от обратной магистрали к напорной трубе, также устанавливаются все требуемые датчики. Их можно приобретать и отдельно, но лучше, чтобы они изначально предусматривались в выбранной вами комплектации.

Важно! Качеству и правильности присоединения контрольно-измерительного оборудования следует уделить самое пристальное внимание. От этого во многом зависит безопасность системы и точность ее настроек в процессе эксплуатации.

  • Далее присоединяются остальные патрубки, этот вид работ ничем не отличается от других сопряжений, главное – тщательная герметизация резьбовых соединений.
  • Последним этапом является пробный запуск системы с целью проверки ее на герметичность и проведения первоначальных настроек. Если все функционирует нормально, то работы можно считать завершенными.

Проверка работы системы – обязательный этап монтажа

Вывод

Правильно подобранный, качественно установленный и настроенный смесительный узел позволяет оптимизировать работу отопительной системы и снизить затраты на обогрев. Видео в этой статье подробнее расскажет о некоторых важных моментах рабочего процесса.

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен

Тепловой узел: принцип действия и схема теплового узла

Одной из ключевых частей теплотрассы является тепловой узел. Схема теплового узла, устройство и принцип действия могут показаться новичку чем-то непонятным, но обладая минимальными знаниями, можно полностью разобраться в этих тонкостях, что поможет в будущем обустроить высокоэффективную отопительную магистраль. В первую очередь следует рассмотреть базовые моменты.

Тепловой пункт расположен у входа теплотрассы в помещение. Основная его задача заключается в изменении рабочих параметров жидкости-теплоносителя, а если быть точным — в снижении температуры и давления воды перед ее попаданием в радиатор или конвектор. Такой процесс необходим не только для повышения безопасности жильцов и предотвращения возможного обжигания при контакте с батареей, но и для увеличения эксплуатационных сроков всего оборудования. Функция незаменима в тех случаях, если в здании имеются полипропиленовые или металлопластиковые трубы.

В соответствующей документации указаны регламентированные режимы работы подобных узлов. Они указывают на верхний и нижний порог температур, до которых может прогреваться теплоноситель. Также согласно современным стандартам на каждом узле должен присутствовать датчик тепла, определяющий текущие показатели жидкости, с которой работает теплоузел.

Схема, принцип работы и устройство теплового оборудования могут зависеть от нескольких особенностей, включая проект, который создавался с учетом индивидуальных требований заказчиков. Среди существующих типов тепловых узлов, особым спросом пользуются модели на основе элеватора. Такая схема характеризуется особой простотой и доступностью, но с ее помощью нельзя менять температуру жидкости в трубах, что доставляет потребителю массу неудобств. Главная проблема — чрезмерный расход тепловых ресурсов при временных оттепелях во время отопления.

В системе тепловых узлов на основе элеватора может присутствовать редуктор пониженного давления, который расположен непосредственно перед элеватором. Сам элеватор осуществляет подмешивание остывшей жидкости из обратной трубы к прогретому теплоносителю, достигшему подающего контура.

Принцип действия узла базируется на создании разряжения в месте выхода, что существенно снижает давление воды и запускает процесс смешивания.

Устройство теплового узла подразумевает массу составляющих, которые взаимозависимы и функционируют для одной общей цели.

В числе основных элементов системы:

  1. 1. Запорная арматура.
  2. 2. Тепловой счетчик.
  3. 3. Грязевик.
  4. 4. Датчик расхода теплоносителя.
  5. 5. Тепловой датчик обратного трубопровода.
  6. 6. Дополнительное оборудование.

В зависимости от индивидуальных особенностей объекта система может оснащаться дополнительными датчиками и другими узлами. Что касается монтажа, то он должен выполняться с учетом определенных правил и требований:

  1. 1. Установка схемы должна происходить непосредственно у границ раздела балансовой принадлежности.
  2. 2. Использовать теплоноситель из общей коммунальной системы для индивидуальных нужд категорически запрещено.
  3. 3. Для контроля среднечасовых и среднесуточных показателей необходимо учитывать рабочие свойства учетного оборудования.
  4. 4. Любые датчики и учетные устройства фиксируются на трубопроводе «обратки».

Существует еще одна разновидность теплового узла частного дома — на основе теплообменника. В таком случае к устройству присоединен специальный теплообменник, который разделяет жидкость из теплотрассы от жидкости в помещении. Подобная функция необходима для дополнительной подготовки теплоносителя с помощью различных присадок и фильтрующих устройств. Схема расширяет возможности в регулировке давления и температурного режима теплоносителя внутри здания. Таким образом затраты на отопление постройки существенно снижаются.

Для подмешивания воды с разной температурой необходимо использовать термостатические клапаны. Подобные системы нормально взаимодействуют с радиаторами из алюминия, но чтобы последние прослужили максимально долго, необходимо тщательно выбирать теплоноситель, отказываясь от низкокачественного сырья. Конечно же, уследить за качеством жидкости проблематично, поэтому лучше отказаться от этого материала, отдав предпочтение биметаллическим или чугунным радиаторам.

Схема подключения ГВС подразумевает использование теплообменника. Такой метод обеспечивает массу плюсов, включая:

  1. 1. Возможность регулирования температуры воды.
  2. 2. Возможность изменения давления горячего теплоносителя.

К сожалению, многие управляющие компании не следят за температурой теплоносителя, а иногда даже занижают ее на несколько градусов. Среднестатистический потребитель практически не заметит такие изменения, но в масштабах целого дома — это экономия внушительных сумм денежных средств.

В многоквартирных и многоэтажных помещениях, административных постройках и других объектах с большой площадью задействуются высокоэффективные ТЭЦ или мощные котельные. В частных коттеджах и небольших домах используются простые автономные системы, которые работают по понятному принципу.

Однако даже с такими установками возникают определенные проблемы, из-за которых становится проблематично проводить настройку или изменение рабочих параметров. А в больших котельных или ТЭЦ схемы такого оборудования гораздо сложнее и крупнее. От центральной трубы расходится масса ответвлений к каждому потребителю. При этом в каждом из них присутствует разное давление, а объемы потребляемого тепла существенно отличаются. Протяженность магистрали бывает разной, поэтому систему нужно проектировать правильно, чтобы самая отдаленная точка получала нужный объем тепловой энергии.

Разница давлений теплоносителя нужна для нормального продвижения теплоносителя по контуру, т. е. оно является естественной альтернативой для насосного оборудования. На этапе проектирования системы необходимо соблюдать установленную схему, иначе повысится риск разбалансировки при изменении объемов потребляемого тепла.

Более того, сильная разветвленность оборудования не должна нарушать эффективность теплоснабжения. Для обеспечения стабильной работы ЦОС (централизованной отопительной системы) нужно оборудовать в каждом помещении персональный элеваторный узел или специальный автоматизированный блок управления.

Конструкции по-особому удобны для всех многоквартирных домов. И если кто-то считает, что можно не использовать такой узел, заменяя его естественной подачей воды с чуть меньшей температурой, то это — глубокое заблуждение, т. к. при отсутствии элеваторного узла появится необходимость увеличить диаметр магистралей для подачи менее горячего теплоносителя. При наличии такой детали появится возможность добавлять в подающую жидкость определенное количество теплоносителя из обратного контура, который уже достаточно остыл.

Тем не менее, есть мнение, что применение элеваторного узла — старый метод, ведь на рынке уже имеются более прогрессивные решения, а именно:

  1. 1. смеситель с 3-ходовым клапаном;
  2. 2. пластинчатый теплообменник.

К сожалению, даже такое незамысловатое устройство, как элеваторный узел, подвергается различным сбоям и неполадкам. Для определения неисправности необходимо проанализировать показания манометров в контрольных точках.

Одной из ключевых причин повреждения элеваторного узла является большое скопление мусора в трубопроводах. Зачастую этим мусором является грязь и твердые частички в воде. При резком снижении давления в отопительной системе чуть дальше грязевика нужно провести очистку этого резервуара. Грязь сбрасывают с помощью спускных каналов, после чего обслуживают сетки и внутренние поверхности конструкции.

При скачках давления необходимо проверить систему на наличие коррозийных процессов или мусора. Также проблему может вызывать разрушение сопла, в результате чего уровень давления станет слишком высоким.

Еще в работе элеваторных узлов встречаются такие явления, при которых давление начинает расти невероятными темпами, а манометры до и после грязевика отображают одинаковое значение. Если это так, необходимо провести комплексную очистку грязевика обратного контура. Для этого следует открыть краны, очистить сетку и избавиться от всех загрязнений внутри.

Если размеры сопла изменились из-за коррозийных процессов, возможно, произошло вертикальное разрегулирование отопительного контура. В таком случае нижние радиаторы будут прогреваться достаточно хорошо, а верхние останутся холодными. Для устранения неисправности нужно заменить сопло.

Опытные инженеры и теплотехники рекомендуют задействовать один из трех режимов работы котельной установки. Такие рекомендации создавались с учетом теоретических данных и математических вычислений, а также были подтверждены многолетним практическим опытом. Каждый из выбранного режима гарантирует высокоэффективную передачу тепла с низким уровнем потерь. При этом на показатели КПД не влияет даже большая протяженность магистрали.

Эти режимы отличаются друг от друга разным соотношением температуры на подающем контуре и обратном:

  1. 1. 150/70 градусов Цельсия.
  2. 2. 130/70 градусов Цельсия.
  3. 3. 95/70 градусов Цельсия.

При выборе оптимального соотношения важно учитывать несколько факторов, включая региональные особенности и среднестатистическую величину зимней температуры воздуха. Если речь идет об отоплении частного дома, лучше отказаться от использования двух первых режимов, которые подразумевают прогрев теплоносителя до 150 и 130 градусов Цельсия. При таких температурах появляется вероятность получения опасных ожогов и других последствий от разгерметизации.

Как известно, жидкость в трубопроводной магистрали разогрета до таких температур, которые превышают точку кипения. Однако она никогда не закипает, что обусловлено соответствующим давлением. При необходимости подобрать оптимальный режим для частной постройки, нужно снизить давление и температуру, для чего и используется элеваторный узел. Сам элемент представляет собой специальное теплотехническое оборудование, которое находится в распределительном пункте.

Разобравшись со схемой теплоузла отопления, можно переходить непосредственно к монтажным работам. Как известно, такие установки зачастую используются в многоквартирных помещениях, которые подключены к общей коммунальной отопительной системе.

Тепловые узлы предназначаются для таких задач:

  1. 1. Проверки и изменения рабочих свойств теплоносителя и теплового потенциала.
  2. 2. Мониторинга текущего состояния систем отопления.
  3. 3. Мониторинга и записи основных показателей теплоносителя — текущей температуры, давления и объема.
  4. 4. Проведения денежных расчетов и составления оптимального плана расходов энергии.

Обустраивая отопительную систему в помещении, нужно понимать, что центральное отопление требует определенных затрат. Если речь идет о многоквартирном здании, то все расходы разделяются на жильцов. Но иногда они бывают неоправданными из-за недобросовестного отношения управляющих компаний и неправильной установки деталей системы.

И чтобы предотвратить существенный финансовый ущерб, важно заранее установить высокоэффективный тепловой узел частного дома, который будет автоматически регулировать любые изменения и подбирать оптимальное соотношение температуры теплоносителя. Только грамотная проверка оборудования и правильное обслуживание позволят обустроить эффективную систему отопления, которая прослужит долгие годы без сбоев.

Зачем нужен насосно-смесительный узел для теплого пола и отопления дома

Как работает насосно-смесительный узел? Почему настоятельно рекомендуется ставить насосную группу для теплого пола и отопления дома? Какие преимущества имеет подобная система? Монтаж котельной с насосно-смесительным узлом – тонкости и технические нюансы.

Насосно-смесительный узел – прибор со взаимосвязанным между собой оборудованием, позволяющим осуществить смешивание потоков теплоносителя, предназначенного для различных контуров системы отопления.

Принцип работы насосно-смесительного узла простыми словами

Как правило, для отопления загородного дома выбирают: водяные теплые полы – для первого этажа, радиаторы – для второго. Температурные режимы этих двух видов источников тепла – разные. Теплый пол работает при температуре – до 45 градусов, радиаторы – до 70 Сº.

Так как котел нам может «выдать» только одну температуру, необходимо использовать насосные группы. Есть два варианта развития событий:

  1. Использовать насосно-смесительный узел, который устанавливается на коллектор.
  2. Использовать полноценные насосно-смесительные группы.

Первый вариант – заведомо проигрышный

  • Отсутствие возможности регулирования температуры в автоматическом режиме.

Так как насосно-смесительный узел, который устанавливается на коллектор, управляется с помощью термоголовки – при желании изменить температуру, будет необходимо производить настройку в ручном режиме.

В котле стоит насос, который «толкает» теплоноситель. В насосных группах тоже стоит насос, который «движет» теплоноситель по трубам теплого пола. В момент того, как теплый пол «выходит» на нагрев и термоголовка полностью открыта – весь теплоноситель, который выходит с котла, «уходит» в теплый пол. Радиатор в это время остывает, дожидаясь своего череда.

Это будет происходить до того момента, пока теплый пол не прогреется и смесительный узел на теплый пол не закроется, чтобы в котле осталось избыточное давление, которое будет распределяться на радиаторы.

Рассуждаем дальше. Чтобы этого избежать, нужно ставить два насоса. Один – для радиаторов. Другой – для теплого пола. Но, даже в этом случае будет не совсем правильная ситуация, т.к. в котле установлен всего один насос, который и толкает теплоноситель. Чтобы уровнять эти потоки, необходимо ставить гидрострелку.

Но, к чему такая громоздкая, не выигрышная по цене конструкция? Тут то и объясняется появление «готовых» насосно-смесительных узлов. Вроде этого.

В данной насосно-смесительной группе Meibes уже есть:

  • Насос для радиаторов – прямой контур;
  • Насос для теплого пола – смесительный контур;
  • Электронный смеситель;
  • Насосная балка, которая по совместительству является гидрострелкой.

Преимущества насосно-смесительной группы

  • Уравновешены все потоки – необходимое количество теплоносителя поступает в радиаторы и теплый пол. Котел работает в стандартном режиме.
  • При установленной погодозависимой автоматике, температура подач теплоносителя в теплый пол – происходит в автоматическом режиме. Достаточно «запросить» желаемую температуру на датчике внутри помещения, как в автономном режиме действие будет выполнено. Причем, постоянно поддерживая заданные показатели.

Особенно актуально в межсезонье, когда в дневные часы на улице «плюсовая» температура, а ночью – «хороший минус».

  • Отсутствуют перепады температур, даже при изменении погоды на улице.

Как происходит работа насосно-смесительного узла

  1. Исходя из погодных условий на улице, автоматика для отопления просчитывает, какую температуру необходимо подать в радиаторы и теплый пол.

К примеру, в радиаторы необходимо подать 50 Сº, а в трубы теплого пола – 30 Сº.

  1. В этом случае, котел «выходит» на максимальный температурный режим – 50 Сº. Затем, теплоноситель поступает в прямой контур и выходит на радиаторы.
  2. Смесительный контур делает «подмес». Берется температура «обратки», смешивается с «подачей». Достигается температура, необходимая для прогрева теплого пола.

Читайте также:  Отработка котел отопление дома
Оцените статью